November 2023

<« INDUSTRIAL ENGINEERING JOURNAL J»

Vol. XVI & Issue No. 11 November - 2023

INDUSTRIAL ENGINEERING JOURNAL

SOFTWARE MAINTAINABILITY PREDICTION FOR OBJECT - ORIENTED
SYSTEMS USING DEEP LEARNING

Anita Devi
Saurabh Charaya
Mukesh Maan

Abstract

Lots of effort has been used to minimize the software maintenance level of any software specially developed with object-oriented
methodology. In this paper, we have proposed a software maintainability prediction model for object-oriented systems using Deep
learning. Google Collaboratory has been used with UQES and UIMS datasets for experimental purposes. MAE, MSE, and Varscore
have been used as performance metrics. From the results, it was found that varscore for both datasets increases with an increase in
the number of hidden layers. However, For the UIMS dataset, the accuracy of the model is 93.7% whereas, for the QUES dataset,

the accuracy of the model is 73.12%.

Keywords: Software Maintainability, Object-Oriented Systems, Neural Network, Deep Neural Network, MAE and MSE.

1. INTRODUCTION

Software Maintenance is one of the utmost parts of the Software
Development Life Cycle and is considered to be sometimes
more expensive than even software development. For any
software product, Maintenance behavior is very difficult to
track. Software Maintenance requires a huge amount of time
and training resources. Accurate Maintenance prediction helps
managers to take essential decisions and improve the quality
of software. Numerous attributes such as coupling, cohesion,
change, maintainability index etc. have been used in the past to
forecast the maintenance behavior of Object-Oriented systems.

Li W and Henry S (1993) investigated the relationship between
metrics and software maintainability prediction for object-
oriented systems and it was concluded that there is a strong
relationship between metrics and maintenance effort. Further,
maintenance effort can be effectively calculated from the
combination of metrics. QUES, UIMS, NASA, UML Class
Diagram, Apache Lucene etc. are some of the prevalent datasets
used for software Maintainability Prediction. The use of Soft
Computing techniques for predicting the maintainability of
software is quite limited due to the high computational cost,
convergence and privacy issues (Yenduri G and Gadekallu T
R (2022)). Machine learning techniques are also being very
widely used these days for predicting the maintenance of
software.

In this research paper, deep learning a subset of machine
learning techniques has been used for predicting the software’s
maintainability. Deep Learning comprises neural networks
with three or more layers and is gaining immense popularity
these days because of its ability to learn better relationships.
MAE, MSE, and Varscore have been used to calculate the
effectiveness of the proposed model. Section 2 describes the
literature review. Experimental setup and implementation
of the proposed model have been described in section 3 and
section 4 respectively.

2. LITERATURE REVIEW

Asystematic review has been performed by MalhotraR and Chug
A (2016) for the current trends in software maintainability and it
was found that Machine Learning and Evolutionary algorithms
have been used widely in this field and design metrics are most
popular for capturing the dependencies of the software. Jha S et
al. (2019) implemented five Machine Learning algorithms i.e.
Ridge Regression, Decision Trees, Quantile Regression Forest,
Support Vector Machines, and Principal Component Analysis
for predicting the software’s maintainability and it was found
that the deep learning technique performed better. Alsolai S
and Roper R (2020) performed a review of Machine Learning
techniques for predicting the software’s maintainability and it
was found that the ensemble models provided higher prediction
accuracy than individual models.

Kumar V et al. (2014) built an ANN model using input factors
such as the count of multiple conditions, count of nodes,
percentage comments, and total lines of code has been used
for maintainability prediction. The model is evaluated on
the historical data in terms of RMSE and the results proved
the efficiency of the proposed model. Kumar L and Rath S
K (2017) implemented the Neuro Fuzzy model for building
a maintainability model using UIMS and QUES datasets.
Rough Set Analysis (RSA) and Principal Component Analysis
(PCA) have been implemented for selecting the subset of
metrics from 10 available inputs and it was interpreted that the
selected metrics have improved accuracy for forecasting the
maintainability.

Malhotra R and Chug A (2012) implemented the Group
Method of Data Handling (GMDH), Genetic Algorithms (GA),
and Probabilistic Neural Network (PNN) for maintainability
prediction using UIMS and QUES datasets. The performance
of the proposed models has been compared with the existing
techniques and the results concluded that GMDH performed
better. Alsolai H et al (2018) compared the performance of




November 2023

<« INDUSTRIAL ENGINEERING JOURNAL J»

individual models and bagging ensemble models for forecasting
the maintainability of software using the QUES dataset and
it was found that bagging ensemble models with k-nearest
neighbors achieved superior performance.

Henry S et al. (1990) determined the system’s maintainability
for Object Oriented and Procedural languages and it was
interpreted that systems developed using Object Oriented
languages are more maintainable. Dhaka V P and Dhaka
S (2013) predicted the software maintainability using the
Machine learning approach on the QUES dataset and it was
found that Gaussian process regression networks (GPRN)
performed better.

Gupta S and Chug A (2021) performed a study of Machine
Learning based Boosting Algorithms (BAs) for predicting the
software’s maintainability and it was found that BA algorithms
performed superior. Gopal M K and Amirthavalli M (2019)
implemented ML algorithms to identify metrics for software
applications using Object Oriented methodology and it was
found that coupling is the most important contributing factor.
Gupta S and Chug A (2020) implemented the Least Squares
Support Vector Machines (LS-SVM) algorithm for SM
Prediction (SMP) on six datasets and the results indicated that
the LS-SVM performed better.

Elmidaoui S et al. (2020) conducted an experiment on the
accuracy analysis of Machine Learning Techniques and it
found that Support Vector Machines, Decision Trees and
Neuro-Fuzzy Techniques provide more accurate results in
terms of prediction and Mean Magnitude of Relative Error
(MMRE). Dagpinar M and Weber J (2003) analyzed numerous
metrics to determine the noteworthy metrics for predicting the
maintainability of software and it was concluded that size and
import direct coupling are the substantial metrics. Sahin C B
(2021) developed a deep learning-based model for predicting
software maintainability using vulnerable software metrics and
the proposed model was found to be accurate and effective.

3. EXPERIMENTAL SETUP

In this research work, UIMS and QUES datasets have been used
for experimental purposes. UIMS and QUES dataset comprises
10 input attributes and 71 rows whereas the QUES dataset
comprises 10 attributes and 39 rows. Deep Neural Networks
have been implemented using Google Colaboratory.

4. IMPLEMENTATION

For implementing Deep Neural Networks, the first step is to
install Java and Keras into Google Colaboratory. The code for
the same has been shown below in Figure 1. Input variables
for the neural network have been specified in Table 1 and the
output is to predict the change i.e. maintenance effort. Change
is determined by the number of lines changed per class in its
maintenance history. The architecture for the Deep Neural
Network has been shown in Figure 2.

Table 1: Input attributes for Deep Neural Network

Input Variables | Significance

Size 1 Number of semi-colons per class
Size2 Sum of number of methods and attributes
DIT Depth in the inheritance tree
NOC Number of children

MPC Message-passing coupling

RFC Response for class

LCOM Lack of cohesion of methods
DAC Data abstraction coupling

WMC Weighted method complexity
NOM Number of methods

Figure 1: Code for installation of Java and Keras in
Google Collaboratory

lapt-get install openjdk-8-jdk-headless -qq > /dev/null
Ipip install -q keras

Figure 2: Architecture of the Deep Neural Network for
Software Maintenance Prediction

Sizel ———=

Size2 —>
Deep Neural

> Change

DIT ——= Network

NOM =

As all the input attributes have the varying range, thus next
step is to scale all the input attributes in the range of 0 and 1
which is achieved by using MinMaxScalar and the code has
been shown in Figure 3. After data pre-processing, dataset is
split into training and test set in the ratio 80:20.

Figure 3: Python Code for scaling
the input attributes

from sklearn import preprocessing
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
print(x_scaled)

Keras Sequential model is then used to build the Deep Neural
Networks. The number of layers in the network has been
increased from 1 to 5 and its impact on the Mean Square Error
(MSE) of the network has been observed. The code for the
network has been described in Figure 4. Input Layer of the
network has 10 neurons as there are 10 input attributes while
the output layer has 1 neuron for predicting the maintenance.
ReLU activation function has been used in hidden layers of the
network. MSE loss function and Adam optimizer has been used
for training of network. Figure 5 describes the summary of the
Deep Neural Net having 5 hidden layers.




November 2023

<« INDUSTRIAL ENGINEERING JOURNAL

Figure 4: Python Code for Building the Neural Network Table 2: Performance of Deep Neural Network for QUES
dataset
model = Sequential()
model .add(Dense(10, activation='relu')) No. of hidden layers | MAE MSE Varscore
model.add(Dense(100, activation="relu')) 1 hidden layer 26.34 8229 26.46
model.add(Dense(100, activation='relu')) - . - -
model .add(Dense(100, activation="relu')) 2 hidden layer 18.98 480.01 48.38
model.add(Dense(100, activation='relu')) 3 hidden layer 14.85 364.49 63.34
model.add(Dense(100, activation="relu')) 4 hidden layer 13.24 396.96 5541
model.add(Dense(1, name="predictions")) : : . .
5 hidden layer 10.5 239.41 73.12
Figure 5: Summary of the Deep Neural Network Table 3: Performance of Deep Neural Network for UIMS
comprising 5 hidden layers dataset
S — No. of hidden layers | MAE | MSE Varscore
1 hidden layer 4274 |76485  |6.03
dense_18 (Dense) (None, 100) 1100
dense_19 (Dense) (None, 100) 10100 2 hidden layer 33.87 1833.42 73.34
e o " e 3 hidden layer 2143 | 104347 |84.42
dense_22 (bense) (None, 100) 10100 4 hidden layer 15.62 537.31 91.64
predictions (Dense) (None, 1) 101
e g T TR 5 hidden layer 13.47 403.29 93.7
e e Figure 6: MAE value for UIMS and QUES dataset
5. PERFORMANCE METRICS >0
40 S,
To evaluate the performance of the model, follows metrics 30 \
have been used: —~— L
20 — . T
a) Mean Absolute Error (MAE): MAE evaluates the average 10 —_—UIMS
of the difference between the real and predicted values of o . . . .
all the observations 1 2 3 4 S
— hidden hidden hidden hidden hidden
1 layer layer layer layer layer
MAE = —Zlyg’eal — yipredl
n = Figure 7: RMSE value for UIMS and QUES dataset
10000
b) Mean Squared Error (MSE): It evaluates the average of the 2000
squares of the errors. 6000 \
1 - 4000 \\ ——AQUES
_ real predy2 2000
MSE _Ez(yi -¥ ) = - \—_—— —UIMS
i=1
¢) Varscore: It is similar to R? but it does not account for = be,'i‘\ be,‘i"\ <
systematic offsets in the prediction. NSRS S 0 g

6. EXPERIMENTAL RESULTS Figure 8: Varscore for UIMS and QUES dataset

Table 2 and Table 3 describe the performance of a Deep Neural
Network with up to 5 hidden layers for QUES and UIMS e /___-
datasets respectively. Figure 6 and Figure 7 describes MAE 80

and MSE values for both UIMS and QUES dataset with an 60 -

increase in the number of hidden layers. From the results, it Z ;

can be concluded that with an increase in the number of hidden 40 4 =QUES
layers in the network, MSE and MAE value decreases. Figure 20 —_—UIMS
8 describes the varscore of UIMS and QUES datasets. From 0 / . . . . .

the results, it can be interpreted that varscore for both datasets

. . . . . 1 2 3 4 5

increases with an increase in the number of hidden layers. For hidden hidden hidden hidden hidden

the UIMS dataset, the accuracy of the model is 93.7% (with 5 b be o b 5

hidden layers) whereas for the QUES dataset, the accuracy of

the model is 73.12% (with 5 hidden layers).




November 2023

<« INDUSTRIAL ENGINEERING JOURNAL J»

7. CONCLUSION

Software Maintenance is one of the utmost parts of the Software
Development Life Cycle. In this paper, Deep Neural Networks
have been explored to predict the maintenance behavior of the
software. Neural Networks with up to 5 hidden layers have been
implemented using Google Colaboratory and its performance
has been observed in terms of MSE, MAE, and varscore. From
the results, it can be concluded that Deep Neural Network with
5 hidden layers gave the least MAE and MSE for both UIMS
and QUES datasets.

REFERENCES

1. Elmidaoui S, Cheikhi L, Idri A and Abran A (2020),
“Machine  Learning  Techniques  for  Sofiware
Maintainability Prediction: Accuracy Analysis”, Journal
of Computer Science and Technology, Vol. 35, ppll47—
1174. hitps://doi.org/10.1007/s11390-020-9668-1

2. Jha S, Kumar R, Son L H, Abdel-basset M, Priyadarshini I,
Sharma R and Long HV (2019), “Deep Learning Approach
for Sofiware Maintainability Metrics Prediction”,
IEEE Access, Vol. 7, pp61840-61855, 2019. https://doi.
org/10.1109/ACCESS.2019.2913349

3. Alsolai H and Roper M (2020), “A Systematic Literature
Review of Machine Learning Techniques for Software
Maintainability Prediction”, Information and Software
Technology, Vol. 119. https://doi.org/10.1016/].
infsof:2019.106214

4. KumarV, Kumar R and Sharma A (2014), “Maintainability
Prediction from Project Metrics Data Analysis Using
Artificial Neural Network: An Interdisciplinary Study”,
Middle-East Journal of Scientific Research, Vol. 19, No.
10, pp1412-1420.

5. Kumar L and Rath SK (2017), “Software Maintainability
Prediction using Hybrid Neural Network and Fuzzy
Logic Approach with Parallel Computing Concept”,
International Journal of System Assurance Engineering
and Management. https://doi.org/10.1007/s13198-017-
0618-4

6. Malhotra R and Chug A (2012), “Software Maintainability
Prediction using Machine Learning Algorithms”, Sofiware
Engineering: an International Journal (SeiJ), Vol. 2, No. 2.

7. Alsolai H, Roper M and Nassar D (2018), “Predicting
Software Maintainability in Object-Oriented Systems
Using Ensemble Techniques”, International Conference
on Software Maintenance and Evolution (ICSME), IEEE.
https://doi.org/10.1109/ICSME.2018.00088

8. Henry S, Humphrey M and Lewis J (1990), “Evaluation
of the Maintainability of Object-Oriented Software”, IEEE
Region 10 Conference on Computer and Communication
Systems. Conference Proceedings, IEEE. https://doi.
org/10.1109/TENCON.1990.152642

9. Dhaka V P and Dhaka S (2013), “Machine Learning
Algorithm Evaluate the Maintainability”, International
Journal Of Computers & Technology, Vol. 10, No. 2,
ppl1376-1383. https://doi.org/10.24297/ijct.v10i2.7008

10. Gupta S and Chug A (2020), “An Extensive Analysis of
Machine Learning Based Boosting Algorithms for Software
Maintainability Prediction”, International Journal of
Interactive Multimedia and Artificial Intelligence, Vol. 7,
No. 2.

11. Gopal M K and Amirthavalli M (2019), “Applying Machine
Learning Techniques to Predict the Maintainability of Open
Source Software”, International Journal of Engineering
and Advanced Technology (IJEAT), Vol. 8, No. 5S3. https://
doi.org/10.35940/ijeat.e1045.07855319

12. Gupta S and Chug A (2020), “Sofiware Maintainability
Prediction of Open Source Datasets using Least Squares
Support Vector Machines,” Journal of Statistics and
Management Systems, Vol. 23, No. 6, pp1011-1021. https://
doi.org/10.1080/09720510.2020.1799501

13. Dagpinar M and Weber J (2003), “Predicting
Maintainability with Object-Oriented Metrics - An
Empirical Comparison”, Reverse Engineering - Working
Conference Proceedings. pp 155- 164. https://doi.
org/10.1109/WCRE.2003.1287246.

14. Li W and Henry S (1993), “Object-oriented Metrics that
Predict Maintainability”, Journal of Systems and Software,
Vol. 23, No. 2, pplll-122. https://doi.org/10.1016/0164-
1212(93)90077-B

15. Yenduria G and Gadekallu T R (2022), “A Systematic
Literature Review of Soft Computing Techniques for
Software Maintainability Prediction: State-of-the-Art,
Challenges and Future Directions”, Soft Computing
Techniques. https://doi.org/10.48550/arXiv.2209.10131

16. Malhotra R and Chug A (2016), “Software Maintainability:
Systematic Literature Review and Current Trends”,
International Journal of Sofiware Engineering and
Knowledge Engineering, Vol. 26, No. 8, pp1221-1253.

17. Sahin C B (2021), “The Role of Vulnerable Software
Metrics on  Software Maintainability — Prediction”,

European Journal of Science and Technology, Vol. 23,
pp686 696. hitps://doi.org/10.31590/ejosat.858720

AUTHORS

Anita Devi, Department of Computer Science & Engineering,
Om Sterling Global University, NH-52, Hisar-Chandigarh
Road, Hisar, Haryana - 125001, India

Email: anita0863@gmail.com

Saurabh Charaya, Department of Computer Science &
Engineering, Om Sterling Global University, NH-52, Hisar-
Chandigarh Road, Hisar, Haryana - 125001, India

Email: saurabh.charaya@gmail.com

Mukesh Maan, Department of Computer Science &
Engineering, Indian Institute of Information Technology, IIIT
Delhi Sonipat Campus, SH 11, Khewra, Sonipat, Haryana —
131 001

Email: mukesh.maan@jiiitsonepat.ac.in




	IIIE Journal November 2023

